Interface MonadState<S, M>

A sequential computation framework with wrapping the type S. All instances of the monad m must satisfy the following laws:

  • Left identity: For all f and a; m.flatMap(f)(m.pure(a)) equals to f(a),
  • Right identity: For all a; m.flatMap(m.pure)(a) equals to a,
  • Associativity: For all f, g and a; m.flatMap(f)(m.flatMap(g)(a)) equals to m.flatMap((x) => m.flatMap(f)(g(x)))(a).

Type Parameters

  • S

  • M

Hierarchy

Properties

apply: (<T, U>(fn) => ((t) => Instance<Apply1<M, U>>))

Type declaration

flatMap: (<T1, U1>(a) => ((t) => Instance<Apply1<M, U1>>))

Type declaration

map: (<T, U>(fn) => ((t) => Instance<Apply1<M, U>>))

Type declaration

pure: (<T>(t) => Instance<Apply1<M, T>>)

Type declaration

state: (<A>(modifier) => Get1<M, A>)

Type declaration

    • <A>(modifier): Get1<M, A>
    • Type Parameters

      • A

      Parameters

      • modifier: ((state) => [A, S])
          • (state): [A, S]
          • Parameters

            • state: S

            Returns [A, S]

      Returns Get1<M, A>

Generated using TypeDoc